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ABSTRACT

\

. An analytical study of the wave-resistance charac-
teristics of near-surface bodles was conducted to determine
1) for a given length and displacement, what changes in
body-surface geometry are necessary to cause wave-resistance
reduction, and 2) how geometrical change affects the wave-
resistance behavior with Froude number and submergence depth.
The general wave-resistance expression for a perturbed ellips-
oid with the constraints of constant displacement and length
1s formulated. A digital computer solution of this varlational
problem is obtained for the case of the spherold due to avall-
able computer-size limitations.

The effects of flneness ratio and submergence-to-
length ratio on the Froude number behavior of the wave re-
sistance for a range of perturbations is demonstrated. Sub-
stantial reduction in wave resistance is possible for all
Froude numbers above and slightly below the optimum Froude
number for a particular perturbation distribution. For
Froude numbers lower than approximately 10% below the optimum
Froude number, a large increase in wave-reslistance coefficlent
may be obtained depending upon the perturbation used. Since
this generally occurs at low Froude numbers, the actual in-
crease in total resistance experlenced for perturbations
yielding acceptable geometrical changes should be quite ac-
ceptable., Depending upon the optimum Froude number, the geo-
metrical changes required for wave-resistance reduction fall
into two classes: 1) midsection bulge with finer bow and stern
for Froude numbers below 0.32; and 2) above 0.32 Froude number
a midsection pinch with bulging bow and stern. o
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NOMENCLATURE

semi-axes of an ellipsold
perturbation paramezster
dlameter of spheroid
eccentriclty of elllpse
Froude number

acceleration of gravity

£

2
longitudinal added mass coefflclent

radius

wave resistance

wave-reslstance coefficlent
constant uniform stream velocity
rectangular coordinates
rectangular coordlnates

velocity potential

strength of doublets with axes In the positive
xl—direction

normalized strength of doublets with axes in the
positive xl-direction

mass density of fluid

Subscript m denotes optimum value
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INTRODUCTION

As an integral part of the research program on
high-speed ship forms at Davidson Laboratory, an analytical
investigation 1nto the reduction of the wave resistance of a
submerged body moving close to the water surface was con-

ducted. The major problems of interest in the investigation
were:

(1) For a given volume and length, how should the
surface geometry be changed in order to cause a reduction in
wave resistance?

(2) How does the geometrical change affect the
wave-resistance behavior with Froude number and depth of im-
mersion?

The linearized theory of wave resistance for bodies
moving near the surface has been well established by Michell,
Havelock, Lunde, etc. These theories impose a linearized
free-surface boundary condition on the veloclty potential.
The wave-resistance expression is an integral with a quad-
ratic integrand consisting either of functions that define
the shape of the hull, or functions that define some type of
hydrodynamic singularities by which the hull 1s generated.
The latter type of integrand, being mathematically more
tractable, is used in this study. The purpéae here 18 to
find a hull éeometry of minimum wave resistance. Therefore,
the investigation becomes a variational problem, and 1t 1is

apparent that the variation should be in the hydrodynamic
singularities.

Weinblum! treated such a minimum problem by con-
sidering a famlly of hull curves whose doublet distribution
was expressed by polynomials having several arbitrary pa-
rameters. His result shows that, for a given Froude number
and immersion depth, the doublet distribution and its
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corresponding wave resistance can be evaluated in terms of
a table of functions. However, no comparison can be made
with his results because the hull displacement is not con-
strained.

The general case of a perturbed ellipsoid is con-
sidered in this analysis. It is approached as a variational
problem with constant displacement as a subsidiary condition.
The ellipmoid is represented by doublets distributed over the
confocal ellipse. This doublet distribution is then perturbed
such that the perturbation will have no influence on the
volume of the ellipsold, and will produce a new hull with less
wave resistance.

THEORY

Throughout the discussion, the axes Xys X, and x,
of a right-hand Cartesian coordinate system are fixed on the
moving body. The origin O has been taken at the geometric
center of the body with Ox, parallel to the direction of
motion and Ox, vertically upward. The fluid is assumed to be
incompressible and inviscid. The motion is irrotational and
characterized by a veloclty potential ¢ which defines the
fluid velocity q by @ = -Vé. The wave height on the free
surface is taken to be small in comparison to the wave length.

Conrider an ellipsoid with semi-axes a,>a,>a, moving
in an infinite fluid at a constant speed U along the
X,~-direction. The velocity potential which describes the
absolute motion of the fluid is given by2

(1)

¢o(x1,x2,x3) "g #o(epga) gae'l (%.‘) dﬁldﬁz
a=0

where
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e2=1_ (_8-32 (3)
a,

2 =] - a.. 2 )

e () ()

a
D, = (2-al$eé ‘ (5)

[+

a, = 8,3z8as j 0 (6)
A (a2+r) \ (a2+r) (a2+2) (a2+2)
r? = (x,-€,)% + (x,-€,)% + (x4-€5)2 (7)

The surface integral in eq. 1 is taken over the confocal
ellipse

(222 + (82 - 1 (8)

on the plane £, = 0. Let the ellipsold be perturbed such that
the perturbation can be represented by a doublet distribution
p,(€,5€2) 1n addition to the original doublet distribution
po(gl,ﬁz). i (€,,€,) 18 bounded by the same confocal ellipse
given by eq. 8. The perturbation potential is then

d
¢1(x1)x2:x3) = Fl(elsgz) v (l) dg,dé, (9)
of,'r
£,=0
The resultant potentlal for the perturbed ellipsold becomes

r 3 1
Blx,,x0x,) = 53“(@1.52) 2 (B e, (10a)

1
£q=0
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where ¢(x,,X2,%g5) = ¢ (x;,Xz,%5) + ¢,(x,,%2,%,) (10b)

and

wE,,6,) = p(€,6,) + p(6,,6,) (10c)

18 the resultant doublet dlstribution. It 1s required that

the volume remains constant upon this perturbation; therefore,%*
gul(el,eg a,at, = 0 (12)
gs’O
By letting u,(€,,65) = p (£,,6,)Q, where Q = Q(&,,€,)
1s an arbitrary function to be chosen later, eq. 10 becomes
l
= UD, (81 2. (&
¢(x,,%2,%5) Tg[l (Ere) (E,?e) (1+Q) (-)dg at,
€3=0 (12)
*

According to Taylor's added mass theorem,
UpV( 1+k ) =bmp “ (u_+i,)a€,dE,=UpV _(1+k?)+4mp ﬁ u,dE,dé,
where k;, V and kl,Vo are longitudinal added mass coef-

ficient and volume of the perturbed and unperturbed
ellipsold, respectively.

Then V(1+k,) - V (1+k3) = -l?ﬁpldeldgz =0 by eq. 11

1+kS
or V = vo( e 1)

For elongated bodies of approximately same length and L/b,
k, and k° are small in comparison to unity, also they are

of the same order of magnitude, 1l.e, k; k is very small.
Therefore,

1+k9 .
I;Ei $ 1l orVsV,
R-933
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When the body is moving below a free surface, the
velocity potential must satisfy the linearized boundary con-
dition

29 %
+ = 1
= k, = 0 (13)
where ko = %e
on the free surface (x. = f).

3
The Green's functlon, satisfying this condition (eq. 13), is
given by 528
1 1
G(xl:xz:x33 gl:ﬁz:ea) =T - ?1

Kis
o0

- k[(xa+ Eg-2F)+1(x,-¢,) cosb]
4o Re sec?0. e o e roed cos[k(xajgz)sinégkde
m k-k sec®6
0 0= (14)

where r3 = (x,-€,)% + (x,-€,)2 + (x5+€,-27) 2

Physically, the Green's function represents the veloclty
potentlal of a source moving at a depth f below the free sur-
face. Therefore, to a first-order approximation, the velocity
potential of the body, represented by the doublet distribution
#(51:52), moving below a free surface may be expressed as

= &(x,,X5,X5) =g u(e,,65) g—‘g d€  dé, (15)
1
ea‘-‘ 0

Substituting eq. 14 into eq. 15, the potential ¢ for (x1—€1)>0
and (x,-£,) <O becomes, respectively,

R-933
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=g F(El:gz)(xl"gl) (%5‘ - %:ig—)dgldeg

Y
o
- —71,-9 Im 5;1(&1,&2) j __}_C8_8_90_2' cos [k(x,-£,) sin6]
ok[(x5-2£) + 1(x,-€,)cos6]

O 4

5 k-kosec o
dg,d€,dkdb

and ¢ =§ u(&lxﬁa) (xl_gl)(ris— - -1’%) dﬁldﬁz
1

Tt loo
- 4ko z ksecé -
—— Im ﬂ u(e,,€,) —=2==— cos [ k(x,-€2) 81né ]

k+kose029
0
e"k [(xs_gf) 1 | xl"gl I cosG] d&ldgzdkde
kLS
2

3|

gﬂ(ﬁpea) cos [ko(xl-el)sece]- cos [ k_(x2- €)
0

ko(x3—2f)se029
sec20 sinb] sec®0 e d€,d¢,de

From ref. 6, the wave-resistance expression derived
from a consideration of the energy expended in the production
of waves 18 glven as

(31

= L 2_g 970
R 2Kg [(5——) ¢ a ) dx,dx,
v xa—f L xfw-m
X -—0-00 (16)

From ref. 5, the velocity potential of ¢ at x,#-» can be ap-
proximated to the form

R-933
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2

-€
0| = 8k§j§y(gl,€2)cos ql(x -) cos qa('z—;-)

Xp-o 0
ko(xs-2f)sec26

sec®0 . e dé ,d€ dé
where q, = kja e sec6 ; q, = kga,e sec?9 sineg .
Substituting eq. 17 into eq. 16, one gets:

7r
-2kofsec?o
R = 16mpk} (P2+P2+P2+P ) sec®oe de

0
where

g £,
P, =jf“(51’ﬁa)°°s ql(a o) cos qz(-—JdE dé,
('El ) (32—->d5 dé
Pz =§ﬁ‘(§1:€2)31n ql 'a':e cos q2 aaé 192
el 52
P, =jf#(€l,€2) sin ql(ajé)81" q2(§;34d€1d€2

€ €
P, =lf#(€1,€2) cos ql(gfé)sin a (2o ag, e,

2

(17)

(18)

(19a)

(19v)

(19¢)

(194)

The Pi terms in eq. 18 are all positive definite quantities.
Therefore, each Pi term will contribute to wave resistance.
However, if p(,, &) 1s an even function with respect to £, and
€,» L.e., u(€;,8,) = (-€,,-€,), then P,, P, and P, vanish
identically which to some extent reduces the resistance R. As
a result, doubly-symmetric bodies are better forms as far as

wave resistance 1is concerned.

Consequently, the expression of the doublet distribu-

tion takes the form:

R-933



Up, ¢, €2 1/2
Wents) = 1 - G297 - (T v

Q will be chosen as an even function with respect to £, and
o« Obviously, the choice of Q is not unique under these con-
straints. For the sake of mathematical simplicity, the cholce
of Q for the present study 1s

Q(g,,8,) = - A coe A(g) cos v(EEY (20)

where A, A and vV are arbitrary parameters to be determined.
The doublet distribution expression now takes the form

UD 1
We,e) = = [1 () - (i‘-)Z] /2[1 - a cosx(aiig)cosv(—:—'*’g)]

ase

(21)

Substituting eq. 20 into the constraint equation (eq. 11), one
obtains

UD 1
-(—,,,—1-)A§ [1‘(5%".3)2'('5::)2] /2cos x(é—:-e)cos v(é-:é-)dgldga =0

which can.be satisfied if (see Appendix)

~a/2
ANAZHA) Jayz Vaz2) = 0

For nontrivial solution of A, A and v, one has

VA2 + 12 = tan\2 + 32 (22)

Substituting eq. 21 into eqgs. 19a through 19d, the results are
( see Appendix)

= U, (¥, - M) (23)
=0, P, =0, and P, = 0 (24)

v W
| |

3
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N .

, \I? Js/z(\’qf + q2) - a a8,
wo = 2 z N Dl = ce—v—
(2 - al)

a/2
NeZ + a2)

1@ Ja/a(\ﬂk-ql)2+(V-q2)2)+ Jay20( X-q1)2+(V+q2)2)+

Nra) 02 Wlra 2+ wra)?)

Ja /o(N(2tq ) Z+( v—qzﬁ)Jr Ja7:(N (Mt )2+(v4q,)®)

NOra o 505" Wira 2™

and q, = k,a e sec 6; q, = kja e sec®6 sin®
Substituting eq. 23 into eq. 18, R becomes
il
- 7
R = 16mpk2(UD, )2 A (yo- Ay)2 g(B)ae (25)

-kofse029
where g(6) = secS6e

2 U2 '
Let L = 2a1, Fe = zT = , and R =

where F is the Froude number, and R'1s the wave resistance
coefficient. Then

yis
R' = KF (v, - A¥)2 g(0) a6 (26)
0
T 1 - e? 1 1
here K = L
where > (2 ;) %) 7°
Denoting
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(3
Ro =K ) ¥,2 () a® (27a)
0
r T
R =K vy, g(e) de6 (27p)
1 ‘0 o
o T
3
and R, = K | Vv g(6) ae (27¢)
o}

R' can be written in terms of a perturbation parameter A¥* as
follows:

R'(A) = Ro - 2AR, + A®R, (28)

The first and second variations of R'(A) are given, respectively,
as

6R'(A)= 2(- R, + AR,) A (29)

and
82R'(A)= 2R_(6A)2 (30)

since R, 1s positive definite as seen from eq. 27c, eq. 30
shows that if R'(A) has an extremal, it 1s a minimum. The mini-
mum of R' occurs at

A =Ap = oy (31)
and has a value

R'(Ap) = R! =R, - (32)

:UI:U
= N

N

*R 1s also a function of A and v, but the majJor parameter which
reduces wave resistance is the parameter A, R,(A,v)
1 ’

**%Since R1=R1(x,v) and R2=R2(x,v),therefore Am=Am(X,v) =

then for various values of (A,v) that satisfy eq. 31 and the
constraint condition eq. 22, a famlly of hull forms of similar
wave-resistance characteristics will result.

R-933
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Since 1t 1s not possible to obtaln a closed form
solution of Ro, Rl and Ra, the problem soluticn requires the
use of a large capacity digital computer. Due to the limited
capacity and speed of Stevens Institute's 1620 IBM computer,
numerical results are presented only for the general case of
a perturbed spheroid.

The equations of a perturbed spherold can be obtained
by taking limits of the perturbed ellipsoid equations, i.e.,
let n = 0, &2'—* 0 and e— 0. The spheroid equations then be-
come for doublet strength:

U(ale)2

2[ e - &n(%_;—:)]

ule) = (1 -22) (1 - A cosag) (33)

l -e

where € = Eé% and -1< € < 1,
1

and for the potential in an infinite fluld:

1
o (0) - [ ue) F (Mae (34)
~1
where r? = (x1 - alet';)2 +y3%; y2 = xi + x2,

The characteristic equation resulting from the constant volume

" constraint reduces to:

A= tan A . (35)

The expressions Ro, Rl, Rz, R',Am and Ré remain unchanged, but

K, Wb and ¥ are different.
il

z

R, = K ]o ¥v,2 &(0) a6 (362)
m
2

R =K Iwo g(6) a6 (36v)
0

R-933
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kis
2
R, = K S; ¥ g(6) a6 (36¢)
R'=R_ - 2AR  + A®R, (37)
R
A =L (38)
m R2
Ra
' - _1
R!=R_ - R (39)
K = g e2 . 2
4 2e _ l+ e
! [1 - e Ln(r—:—g)]

_ 2
¥, = = (8in q, - q, cos q)
ql

sin(r-q,) - (A-q,)cos(Ar-q;) sin(q)) - (Mq,)cos(Mq )
+

(x-q,)® (M+q,)®

where q, = -£_ sec 6 .

2p2

GEOMETRY OF PERTURBED SPHEROID*
The doublet distribution between foci

2.2(1 _ g2
) e x (40)

) 2[2e - in (1+e ] a,°©

Bol€)

1-¢2

is the image of the uniform stream -U within the spherold:

r? = a2(1 - e2) (1 - e2£3) (41)

o]

* Thlis method 1s suggested Ly Professor L. Landweber, from
the State Unilversity of Iowa.

R-933
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An increment in the doublet distribution Ap will produce a
change in the ordinate of the spheroid which, 1t will be assumed,
is given by modified Munk's formula:

1+ k
Ap = —u—l_ va( rR) (42)

where k1 i1s the added mass coefficient of the spherold given
bylz

2 1-e2 | 2e 1+e
= - Ln( ( 43)
I+k e [l-e2 I?E)]

Taking Ap = p = -Ap,(€)cos A, together with egs. 40, 42 and
43:

Aaf(l-ea)
A(r2) = - ——— (1-£2) cos At (44)
combine eqs. 41 and 44 and get:

r?(¢) = r2 + 6(r?) = aﬁ(l -ez)[l-ezga-n%(l—ga)cos kék45)

r) = (Py1- G A (25 )2] cos 3 (0  (46)

where r(x) 1s the radius of the perturbed spheroid along the
x-axis
(%) 18 the slenderness ration of the undisturbed
spheroid.

RESULTS AND ANALYSIS

The optimum perturbation parameter Am 1s plotted
versus Froude number in Fig. 1. At Froude numbers below .30,
Am is almost independent of both slenderness and immersion
ratlio. For Froude numbers .28< F<¢ .30, Am shows 1ittle change

and has a value of approximately Am = «,20. For F >.30, Am

R-933
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varies significantly with depth, f/L, but varies very little
with fineness ratio, D/L. This result is expected because at
infinlte depth, there 1s no wave resistance.

By examining the doublet distribution, one can obtain a
good indication of what the approximate hull form will be like.
Therefore, from eq. 33, one may conclude that:

1) for A< O, the hull forms bulge out at the midsection
and are narrow at the ends,

2) for 0<A<1l, the hull forms neck in at the midsection
and bulge out at the ends,

3) for A>1, the hull form may be imaginary.

There 18 no clear-cut dividing line as to what type of body"
geometry a hull may have and stlll be considered reasonable,.
However, the perturbed bodies with A 0.5 generated from a
spherold could easily be considered reasonable forms.

The fact that the body geometry for minimum wave
resistance varies wlth Froude number and immersion ratio makes
it apparent that there 1s no single hull that can have mini-
mum wave resistance over a range of Froude numbers and sub-
mergence depths. However, from Fig. 1 and eq. 33, for arbit-
rary values of A ranging from - .20< A< 1l, there 1s assoclated
a hull form which will have a minimum at some F and f/L. For
example: for A = - ,20, the minimum will occur between F = .28
and .30. With this in mind, A = -.20, .25, .50 and .75 were
chosen to 1llustrate the results of this analysis. The Froude
number and submergence ratio corresponding to the minimum for
the above perturbation parameters are shown in Fig. 2. The
assoclated normalized doublet distributions and the approxi-
mate hull form are shown respectively in Figs. 3 and 4.

Figures 5 and 6, respectively, show the wave-resis-
tance variation with Froude number and immersion ratio. As

R-933
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would be expected, the wave resistance over the entire Froude-
number range is affected by the geometrical change resulting
from the perturbation. For A >0 the wave-resistance coeffi-
cient, in general, has a reduction at high Froude-number
values, but shows considerable increase at low values, es-
pecially when the body moves toward the free surface. Also,
for A <O, the wave-resistance coefficient reduces at low but
increases at high Froude numbers.
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APPENDIX

Evaluate the surface integral of the form

- - (Xy2 _ 2
I 541 (a) (%) cosax cospfydxdy
over the surface of an ellipse
Xy2 2 _
(D2 +(H2z =1
where @ and B are arbitrary constants.

Let x = asingcos 8 and y = bcos¢, then the element surface
becomes ds = absin®¢sinfd¢do .

Upon change of variables, the lntegral I can be written as

LK
I= ab.!)s(; 8in®¢sin26 cos[(aasin¢) cose]cos(bﬁcoscp)decw .

Denoting ¥ = aasin¢, and integrating with respect to 6:

m

™
P(+y) =j 8in?6 cos(ycos6)de
© 1l
! sin@cos(ycos8) d(<vycoss) .

R

Integrating P(y) by parts, we obtain
™

P(y) = .]-‘-I cos6 sin(ycos8)dd =T J (v) .
Y ) Y1
Substitute P(y) back into I; then I becomes ,

1\'
_m
I== sinzwl(aasin@cos(bﬁcos¢)d¢

0
but cosé =\[¥ J-% (6)

therefore

R-933
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2 2
I=— IJl(aasinqb) J__} (pBcosg) cos“¢ sin®pde .
o

From ref. 13, under Sonine's second finite integral, the
expression I 1s of the form

I =(m\Znab) 35 sa(V(aa) +<:ﬁl )
(W(aa)2+(bp)2)

o e
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